\(\int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx\) [992]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 43 \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {a^3 (a A+a B \sin (c+d x))^2}{2 (A+B) d (a-a \sin (c+d x))^2} \]

[Out]

1/2*a^3*(a*A+a*B*sin(d*x+c))^2/(A+B)/d/(a-a*sin(d*x+c))^2

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {2915, 37} \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {a^3 (a A+a B \sin (c+d x))^2}{2 d (A+B) (a-a \sin (c+d x))^2} \]

[In]

Int[Sec[c + d*x]^5*(a + a*Sin[c + d*x])^3*(A + B*Sin[c + d*x]),x]

[Out]

(a^3*(a*A + a*B*Sin[c + d*x])^2)/(2*(A + B)*d*(a - a*Sin[c + d*x])^2)

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^5 \text {Subst}\left (\int \frac {A+\frac {B x}{a}}{(a-x)^3} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^3 (a A+a B \sin (c+d x))^2}{2 (A+B) d (a-a \sin (c+d x))^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.86 \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {a^3 (A+B \sin (c+d x))^2}{2 (A+B) d (-1+\sin (c+d x))^2} \]

[In]

Integrate[Sec[c + d*x]^5*(a + a*Sin[c + d*x])^3*(A + B*Sin[c + d*x]),x]

[Out]

(a^3*(A + B*Sin[c + d*x])^2)/(2*(A + B)*d*(-1 + Sin[c + d*x])^2)

Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.42

method result size
parallelrisch \(\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (A \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+A \right ) a^{3}}{d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}\) \(61\)
risch \(-\frac {2 \left (A \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+i B \,a^{3} {\mathrm e}^{i \left (d x +c \right )}-B \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}-i B \,a^{3} {\mathrm e}^{3 i \left (d x +c \right )}\right )}{\left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} d}\) \(82\)
derivativedivides \(\frac {\frac {A \,a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+B \,a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+3 A \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {3 B \,a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+\frac {3 A \,a^{3}}{4 \cos \left (d x +c \right )^{4}}+3 B \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {B \,a^{3}}{4 \cos \left (d x +c \right )^{4}}}{d}\) \(337\)
default \(\frac {\frac {A \,a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+B \,a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+3 A \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {3 B \,a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+\frac {3 A \,a^{3}}{4 \cos \left (d x +c \right )^{4}}+3 B \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {B \,a^{3}}{4 \cos \left (d x +c \right )^{4}}}{d}\) \(337\)
norman \(\frac {\frac {4 \left (7 A \,a^{3}+5 B \,a^{3}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 \left (7 A \,a^{3}+5 B \,a^{3}\right ) \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 \left (36 A \,a^{3}+44 B \,a^{3}\right ) \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 A \,a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 A \,a^{3} \left (\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (3 A +B \right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (3 A +B \right ) \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (7 A +4 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (7 A +4 B \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {10 a^{3} \left (7 A +8 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {10 a^{3} \left (7 A +8 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (21 A +20 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (21 A +20 B \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (29 A +31 B \right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (29 A +31 B \right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}\) \(414\)

[In]

int(sec(d*x+c)^5*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*tan(1/2*d*x+1/2*c)*(A*tan(1/2*d*x+1/2*c)^2+(-A+B)*tan(1/2*d*x+1/2*c)+A)*a^3/d/(tan(1/2*d*x+1/2*c)-1)^4

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.14 \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=-\frac {2 \, B a^{3} \sin \left (d x + c\right ) + {\left (A - B\right )} a^{3}}{2 \, {\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \]

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*B*a^3*sin(d*x + c) + (A - B)*a^3)/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) - 2*d)

Sympy [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**5*(a+a*sin(d*x+c))**3*(A+B*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.09 \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {2 \, B a^{3} \sin \left (d x + c\right ) + {\left (A - B\right )} a^{3}}{2 \, {\left (\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1\right )} d} \]

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/2*(2*B*a^3*sin(d*x + c) + (A - B)*a^3)/((sin(d*x + c)^2 - 2*sin(d*x + c) + 1)*d)

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.91 \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {2 \, {\left (A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{d {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{4}} \]

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="giac")

[Out]

2*(A*a^3*tan(1/2*d*x + 1/2*c)^3 - A*a^3*tan(1/2*d*x + 1/2*c)^2 + B*a^3*tan(1/2*d*x + 1/2*c)^2 + A*a^3*tan(1/2*
d*x + 1/2*c))/(d*(tan(1/2*d*x + 1/2*c) - 1)^4)

Mupad [B] (verification not implemented)

Time = 9.62 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.84 \[ \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {\frac {a^3\,\left (A-B\right )}{2}+B\,a^3\,\sin \left (c+d\,x\right )}{d\,{\left (\sin \left (c+d\,x\right )-1\right )}^2} \]

[In]

int(((A + B*sin(c + d*x))*(a + a*sin(c + d*x))^3)/cos(c + d*x)^5,x)

[Out]

((a^3*(A - B))/2 + B*a^3*sin(c + d*x))/(d*(sin(c + d*x) - 1)^2)